Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Limitless stability for Graph Convolutional Networks (2301.11443v3)

Published 26 Jan 2023 in cs.LG and math.FA

Abstract: This work establishes rigorous, novel and widely applicable stability guarantees and transferability bounds for graph convolutional networks -- without reference to any underlying limit object or statistical distribution. Crucially, utilized graph-shift operators (GSOs) are not necessarily assumed to be normal, allowing for the treatment of networks on both undirected- and for the first time also directed graphs. Stability to node-level perturbations is related to an 'adequate (spectral) covering' property of the filters in each layer. Stability to edge-level perturbations is related to Lipschitz constants and newly introduced semi-norms of filters. Results on stability to topological perturbations are obtained through recently developed mathematical-physics based tools. As an important and novel example, it is showcased that graph convolutional networks are stable under graph-coarse-graining procedures (replacing strongly-connected sub-graphs by single nodes) precisely if the GSO is the graph Laplacian and filters are regular at infinity. These new theoretical results are supported by corresponding numerical investigations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube