Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Limitless stability for Graph Convolutional Networks (2301.11443v3)

Published 26 Jan 2023 in cs.LG and math.FA

Abstract: This work establishes rigorous, novel and widely applicable stability guarantees and transferability bounds for graph convolutional networks -- without reference to any underlying limit object or statistical distribution. Crucially, utilized graph-shift operators (GSOs) are not necessarily assumed to be normal, allowing for the treatment of networks on both undirected- and for the first time also directed graphs. Stability to node-level perturbations is related to an 'adequate (spectral) covering' property of the filters in each layer. Stability to edge-level perturbations is related to Lipschitz constants and newly introduced semi-norms of filters. Results on stability to topological perturbations are obtained through recently developed mathematical-physics based tools. As an important and novel example, it is showcased that graph convolutional networks are stable under graph-coarse-graining procedures (replacing strongly-connected sub-graphs by single nodes) precisely if the GSO is the graph Laplacian and filters are regular at infinity. These new theoretical results are supported by corresponding numerical investigations.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)