Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Discriminative Entropy Clustering and its Relation to K-means and SVM (2301.11405v4)

Published 26 Jan 2023 in cs.LG and cs.CV

Abstract: Maximization of mutual information between the model's input and output is formally related to "decisiveness" and "fairness" of the softmax predictions, motivating these unsupervised entropy-based criteria for clustering. First, in the context of linear softmax models, we discuss some general properties of entropy-based clustering. Disproving some earlier claims, we point out fundamental differences with K-means. On the other hand, we prove the margin maximizing property for decisiveness establishing a relation to SVM-based clustering. Second, we propose a new self-labeling formulation of entropy clustering for general softmax models. The pseudo-labels are introduced as auxiliary variables "splitting" the fairness and decisiveness. The derived self-labeling loss includes the reverse cross-entropy robust to pseudo-label errors and allows an efficient EM solver for pseudo-labels. Our algorithm improves the state of the art on several standard benchmarks for deep clustering.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.