Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Discriminative Entropy Clustering and its Relation to K-means and SVM (2301.11405v4)

Published 26 Jan 2023 in cs.LG and cs.CV

Abstract: Maximization of mutual information between the model's input and output is formally related to "decisiveness" and "fairness" of the softmax predictions, motivating these unsupervised entropy-based criteria for clustering. First, in the context of linear softmax models, we discuss some general properties of entropy-based clustering. Disproving some earlier claims, we point out fundamental differences with K-means. On the other hand, we prove the margin maximizing property for decisiveness establishing a relation to SVM-based clustering. Second, we propose a new self-labeling formulation of entropy clustering for general softmax models. The pseudo-labels are introduced as auxiliary variables "splitting" the fairness and decisiveness. The derived self-labeling loss includes the reverse cross-entropy robust to pseudo-label errors and allows an efficient EM solver for pseudo-labels. Our algorithm improves the state of the art on several standard benchmarks for deep clustering.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube