Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Understanding Finetuning for Factual Knowledge Extraction from Language Models (2301.11293v1)

Published 26 Jan 2023 in cs.CL and cs.LG

Abstract: LLMs (LMs) pretrained on large corpora of text from the web have been observed to contain large amounts of various types of knowledge about the world. This observation has led to a new and exciting paradigm in knowledge graph construction where, instead of manual curation or text mining, one extracts knowledge from the parameters of an LM. Recently, it has been shown that finetuning LMs on a set of factual knowledge makes them produce better answers to queries from a different set, thus making finetuned LMs a good candidate for knowledge extraction and, consequently, knowledge graph construction. In this paper, we analyze finetuned LMs for factual knowledge extraction. We show that along with its previously known positive effects, finetuning also leads to a (potentially harmful) phenomenon which we call Frequency Shock, where at the test time the model over-predicts rare entities that appear in the training set and under-predicts common entities that do not appear in the training set enough times. We show that Frequency Shock leads to a degradation in the predictions of the model and beyond a point, the harm from Frequency Shock can even outweigh the positive effects of finetuning, making finetuning harmful overall. We then consider two solutions to remedy the identified negative effect: 1- model mixing and 2- mixture finetuning with the LM's pre-training task. The two solutions combined lead to significant improvements compared to vanilla finetuning.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.