Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Quantum Alternating Operator Ansatz for Satisfiability Problems (2301.11292v1)

Published 26 Jan 2023 in quant-ph and cs.DS

Abstract: We comparatively study, through large-scale numerical simulation, the performance across a large set of Quantum Alternating Operator Ansatz (QAOA) implementations for finding approximate and optimum solutions to unconstrained combinatorial optimization problems. Our survey includes over 100 different mixing unitaries, and we combine each mixer with both the standard phase separator unitary representing the objective function and a thresholded version. Our numerical tests for randomly chosen instances of the unconstrained optimization problems Max 2-SAT and Max 3-SAT reveal that the traditional transverse-field mixer with the standard phase separator performs best for problem sizes of 8 through 14 variables, while the recently introduced Grover mixer with thresholding wins at problems of size 6. This result (i) corrects earlier work suggesting that the Grover mixer is a superior mixer based only on results from problems of size 6, thus illustrating the need to push numerical simulation to larger problem sizes to more accurately predict performance; and (ii) it suggests that more complicated mixers and phase separators may not improve QAOA performance.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.