Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Multiclass Simulation-Based Dynamic Traffic Assignment Model for Mixed Traffic Flow of Connected and Autonomous Vehicles and Human-Driven Vehicles (2301.11083v1)

Published 26 Jan 2023 in eess.SY and cs.SY

Abstract: One of the potential capabilities of Connected and Autonomous Vehicles (CAVs) is that they can have different route choice behavior and driving behavior compared to human Driven Vehicles (HDVs). This will lead to mixed traffic flow with multiple classes of route choice behavior. Therefore, it is crucial to solve the multiclass Traffic Assignment Problem (TAP) in mixed traffic of CAVs and HDVs. Few studies have tried to solve this problem; however, most used analytical solutions, which are challenging to implement in real and large networks (especially in dynamic cases). Also, studies in implementing simulation-based methods have not considered all of CAVs' potential capabilities. On the other hand, several different (conflicting) assumptions are made about the CAV's route choice behavior in these studies. So, providing a tool that can solve the multiclass TAP of mixed traffic under different assumptions can help researchers to understand the impacts of CAVs better. To fill these gaps, this study provides an open-source solution framework of the multiclass simulation-based traffic assignment problem for mixed traffic of CAVs and HDVs. This model assumes that CAVs follow system optimal principles with rerouting capability, while HDVs follow user equilibrium principles. Moreover, this model can capture the impacts of CAVs on road capacity by considering distinct driving behavioral models in both micro and meso scales traffic simulation. This proposed model is tested in two case studies which shows that as the penetration rate of CAVs increases, the total travel time of all vehicles decreases.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube