Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

BERT-Embedding and Citation Network Analysis based Query Expansion Technique for Scholarly Search (2301.11069v1)

Published 26 Jan 2023 in cs.IR

Abstract: The enormous growth of research publications has made it challenging for academic search engines to bring the most relevant papers against the given search query. Numerous solutions have been proposed over the years to improve the effectiveness of academic search, including exploiting query expansion and citation analysis. Query expansion techniques mitigate the mismatch between the language used in a query and indexed documents. However, these techniques can suffer from introducing non-relevant information while expanding the original query. Recently, contextualized model BERT to document retrieval has been quite successful in query expansion. Motivated by such issues and inspired by the success of BERT, this paper proposes a novel approach called QeBERT. QeBERT exploits BERT-based embedding and Citation Network Analysis (CNA) in query expansion for improving scholarly search. Specifically, we use the context-aware BERT-embedding and CNA for query expansion in Pseudo-Relevance Feedback (PRF) fash-ion. Initial experimental results on the ACL dataset show that BERT-embedding can provide a valuable augmentation to query expansion and improve search relevance when combined with CNA.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube