Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tighter Bounds on the Expressivity of Transformer Encoders (2301.10743v3)

Published 25 Jan 2023 in cs.LG, cs.FL, and cs.LO

Abstract: Characterizing neural networks in terms of better-understood formal systems has the potential to yield new insights into the power and limitations of these networks. Doing so for transformers remains an active area of research. Bhattamishra and others have shown that transformer encoders are at least as expressive as a certain kind of counter machine, while Merrill and Sabharwal have shown that fixed-precision transformer encoders recognize only languages in uniform $TC0$. We connect and strengthen these results by identifying a variant of first-order logic with counting quantifiers that is simultaneously an upper bound for fixed-precision transformer encoders and a lower bound for transformer encoders. This brings us much closer than before to an exact characterization of the languages that transformer encoders recognize.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.