Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Incremental Inverse Reinforcement Learning Approach for Motion Planning with Separated Path and Velocity Preferences (2301.10528v2)

Published 25 Jan 2023 in cs.RO

Abstract: Humans often demonstrate diverse behaviors due to their personal preferences, for instance, related to their individual execution style or personal margin for safety. In this paper, we consider the problem of integrating both path and velocity preferences into trajectory planning for robotic manipulators. We first learn reward functions that represent the user path and velocity preferences from kinesthetic demonstration. We then optimize the trajectory in two steps: first the path and then the velocity, to produce trajectories that adhere to both task requirements and user preferences. We design a set of parameterized features that capture the fundamental preferences in a pick-and-place type of object-transportation task, both in shape and timing of the motion. We demonstrate that our method is capable of generalizing such preferences to new scenarios. We implement our algorithm on a Franka Emika 7-DoF robot arm, and validate the functionality and flexibility of our approach in a user study. The results show that non-expert users are able to teach the robot their preferences with just a few iterations of feedback.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.