Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Model soups to increase inference without increasing compute time (2301.10092v1)

Published 24 Jan 2023 in cs.CV and cs.AI

Abstract: In this paper, we compare Model Soups performances on three different models (ResNet, ViT and EfficientNet) using three Soup Recipes (Greedy Soup Sorted, Greedy Soup Random and Uniform soup) from arXiv:2203.05482, and reproduce the results of the authors. We then introduce a new Soup Recipe called Pruned Soup. Results from the soups were better than the best individual model for the pre-trained vision transformer, but were much worst for the ResNet and the EfficientNet. Our pruned soup performed better than the uniform and greedy soups presented in the original paper. We also discuss the limitations of weight-averaging that were found during the experiments. The code for our model soup library and the experiments with different models can be found here: https://github.com/milo-sobral/ModelSoup

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube