Papers
Topics
Authors
Recent
2000 character limit reached

Optical convolutional neural network with atomic nonlinearity (2301.09994v1)

Published 24 Jan 2023 in physics.optics and cs.ET

Abstract: Due to their high degree of parallelism, fast processing speeds and low power consumption, analog optical functional elements offer interesting routes for realizing neuro-morphic computer hardware. For instance, convolutional neural networks lend themselves to analog optical implementations by exploiting the Fourier-transform characteristics of suitable designed optical setups. However, the efficient implementation of optical nonlinearities for such neural networks still represents challenges. In this work, we report on the realization and characterization of a three-layer optical convolutional neural network where the linear part is based on a 4f-imaging system and the optical nonlinearity is realized via the absorption profile of a cesium atomic vapor cell. This system classifies the handwritten digital dataset MNIST with 83.96% accuracy, which agrees well with corresponding simulations. Our results thus demonstrate the viability of utilizing atomic nonlinearities in neural network architectures with low power consumption.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.