Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Solving the Discretised Neutron Diffusion Equations using Neural Networks (2301.09939v1)

Published 24 Jan 2023 in cs.CE, cs.AI, cs.LG, and physics.comp-ph

Abstract: This paper presents a new approach which uses the tools within AI software libraries as an alternative way of solving partial differential equations (PDEs) that have been discretised using standard numerical methods. In particular, we describe how to represent numerical discretisations arising from the finite volume and finite element methods by pre-determining the weights of convolutional layers within a neural network. As the weights are defined by the discretisation scheme, no training of the network is required and the solutions obtained are identical (accounting for solver tolerances) to those obtained with standard codes often written in Fortran or C++. We also explain how to implement the Jacobi method and a multigrid solver using the functions available in AI libraries. For the latter, we use a U-Net architecture which is able to represent a sawtooth multigrid method. A benefit of using AI libraries in this way is that one can exploit their power and their built-in technologies. For example, their executions are already optimised for different computer architectures, whether it be CPUs, GPUs or new-generation AI processors. In this article, we apply the proposed approach to eigenvalue problems in reactor physics where neutron transport is described by diffusion theory. For a fuel assembly benchmark, we demonstrate that the solution obtained from our new approach is the same (accounting for solver tolerances) as that obtained from the same discretisation coded in a standard way using Fortran. We then proceed to solve a reactor core benchmark using the new approach.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.