Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Differentiable bit-rate estimation for neural-based video codec enhancement (2301.09776v1)

Published 24 Jan 2023 in eess.IV, cs.IT, cs.LG, cs.MM, and math.IT

Abstract: Neural networks (NN) can improve standard video compression by pre- and post-processing the encoded video. For optimal NN training, the standard codec needs to be replaced with a codec proxy that can provide derivatives of estimated bit-rate and distortion, which are used for gradient back-propagation. Since entropy coding of standard codecs is designed to take into account non-linear dependencies between transform coefficients, bit-rates cannot be well approximated with simple per-coefficient estimators. This paper presents a new approach for bit-rate estimation that is similar to the type employed in training end-to-end neural codecs, and able to efficiently take into account those statistical dependencies. It is defined from a mathematical model that provides closed-form formulas for the estimates and their gradients, reducing the computational complexity. Experimental results demonstrate the method's accuracy in estimating HEVC/H.265 codec bit-rates.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.