Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Architectural Support for Efficient Data Movement in Disaggregated Systems (2301.09674v1)

Published 23 Jan 2023 in cs.AR, cs.DC, and cs.PF

Abstract: Resource disaggregation offers a cost effective solution to resource scaling, utilization, and failure-handling in data centers by physically separating hardware devices in a server. Servers are architected as pools of processor, memory, and storage devices, organized as independent failure-isolated components interconnected by a high-bandwidth network. A critical challenge, however, is the high performance penalty of accessing data from a remote memory module over the network. Addressing this challenge is difficult as disaggregated systems have high runtime variability in network latencies/bandwidth, and page migration can significantly delay critical path cache line accesses in other pages. This paper introduces DaeMon, the first software-transparent and robust mechanism to significantly alleviate data movement overheads in fully disaggregated systems. First, to enable scalability to multiple hardware components in the system, we enhance each compute and memory unit with specialized engines that transparently handle data migrations. Second, to achieve high performance and provide robustness across various network, architecture and application characteristics, we implement a synergistic approach of bandwidth partitioning, link compression, decoupled data movement of multiple granularities, and adaptive granularity selection in data movements. We evaluate DaeMon in a wide variety of workloads at different network and architecture configurations using a state-of-the-art accurate simulator and demonstrate that DaeMon significantly improves system performance and data access costs over the widely-adopted approach of moving data at page granularity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.