Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Flexible conditional density estimation for time series (2301.09671v1)

Published 23 Jan 2023 in stat.ME, cs.LG, and stat.ML

Abstract: This paper introduces FlexCodeTS, a new conditional density estimator for time series. FlexCodeTS is a flexible nonparametric conditional density estimator, which can be based on an arbitrary regression method. It is shown that FlexCodeTS inherits the rate of convergence of the chosen regression method. Hence, FlexCodeTS can adapt its convergence by employing the regression method that best fits the structure of data. From an empirical perspective, FlexCodeTS is compared to NNKCDE and GARCH in both simulated and real data. FlexCodeTS is shown to generally obtain the best performance among the selected methods according to either the CDE loss or the pinball loss.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.