Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online Kernel Sliced Inverse Regression (2301.09516v1)

Published 23 Jan 2023 in stat.CO, math.ST, stat.ML, and stat.TH

Abstract: Online dimension reduction is a common method for high-dimensional streaming data processing. Online principal component analysis, online sliced inverse regression, online kernel principal component analysis and other methods have been studied in depth, but as far as we know, online supervised nonlinear dimension reduction methods have not been fully studied. In this article, an online kernel sliced inverse regression method is proposed. By introducing the approximate linear dependence condition and dictionary variable sets, we address the problem of increasing variable dimensions with the sample size in the online kernel sliced inverse regression method, and propose a reduced-order method for updating variables online. We then transform the problem into an online generalized eigen-decomposition problem, and use the stochastic optimization method to update the centered dimension reduction directions. Simulations and the real data analysis show that our method can achieve close performance to batch processing kernel sliced inverse regression.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.