Papers
Topics
Authors
Recent
2000 character limit reached

Augmented Block-Arnoldi Recycling CFD Solvers

Published 23 Jan 2023 in math.NA and cs.NA | (2301.09480v2)

Abstract: One of the limitations of recycled GCRO methods is the large amount of computation required to orthogonalize the basis vectors of the newly generated Krylov subspace for the approximate solution when combined with those of the recycle subspace. Recent advancements in low synchronization Gram-Schmidt and generalized minimal residual algorithms, Swirydowicz et al.~\cite{2020-swirydowicz-nlawa}, Carson et al. \cite{Carson2022}, and Lund \cite{Lund2022}, can be incorporated, thereby mitigating the loss of orthogonality of the basis vectors. An augmented Arnoldi formulation of recycling leads to a matrix decomposition and the associated algorithm can also be viewed as a {\it block} Krylov method. Generalizations of both classical and modified block Gram-Schmidt algorithms have been proposed, Carson et al.~\cite{Carson2022}. Here, an inverse compact $WY$ modified Gram-Schmidt algorithm is applied for the inter-block orthogonalization scheme with a block lower triangular correction matrix $T_k$ at iteration $k$. When combined with a weighted (oblique inner product) projection step, the inverse compact $WY$ scheme leads to significant (over 10$\times$ in certain cases) reductions in the number of solver iterations per linear system. The weight is also interpreted in terms of the angle between restart residuals in LGMRES, as defined by Baker et al.\cite{Baker2005}. In many cases, the recycle subspace eigen-spectrum can substitute for a preconditioner.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.