Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Multi-Agent Deep Deterministic Policy Gradients and their Explainability for SMARTS Environment (2301.09420v1)

Published 20 Jan 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Multi-Agent RL or MARL is one of the complex problems in Autonomous Driving literature that hampers the release of fully-autonomous vehicles today. Several simulators have been in iteration after their inception to mitigate the problem of complex scenarios with multiple agents in Autonomous Driving. One such simulator--SMARTS, discusses the importance of cooperative multi-agent learning. For this problem, we discuss two approaches--MAPPO and MADDPG, which are based on-policy and off-policy RL approaches. We compare our results with the state-of-the-art results for this challenge and discuss the potential areas of improvement while discussing the explainability of these approaches in conjunction with waypoints in the SMARTS environment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.