Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Multi-Agent Deep Deterministic Policy Gradients and their Explainability for SMARTS Environment (2301.09420v1)

Published 20 Jan 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Multi-Agent RL or MARL is one of the complex problems in Autonomous Driving literature that hampers the release of fully-autonomous vehicles today. Several simulators have been in iteration after their inception to mitigate the problem of complex scenarios with multiple agents in Autonomous Driving. One such simulator--SMARTS, discusses the importance of cooperative multi-agent learning. For this problem, we discuss two approaches--MAPPO and MADDPG, which are based on-policy and off-policy RL approaches. We compare our results with the state-of-the-art results for this challenge and discuss the potential areas of improvement while discussing the explainability of these approaches in conjunction with waypoints in the SMARTS environment.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.