Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Robust Video Instance Segmentation with Temporal-Aware Transformer (2301.09416v1)

Published 20 Jan 2023 in cs.CV

Abstract: Most existing transformer based video instance segmentation methods extract per frame features independently, hence it is challenging to solve the appearance deformation problem. In this paper, we observe the temporal information is important as well and we propose TAFormer to aggregate spatio-temporal features both in transformer encoder and decoder. Specifically, in transformer encoder, we propose a novel spatio-temporal joint multi-scale deformable attention module which dynamically integrates the spatial and temporal information to obtain enriched spatio-temporal features. In transformer decoder, we introduce a temporal self-attention module to enhance the frame level box queries with the temporal relation. Moreover, TAFormer adopts an instance level contrastive loss to increase the discriminability of instance query embeddings. Therefore the tracking error caused by visually similar instances can be decreased. Experimental results show that TAFormer effectively leverages the spatial and temporal information to obtain context-aware feature representation and outperforms state-of-the-art methods.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.