Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

AttMEMO : Accelerating Transformers with Memoization on Big Memory Systems (2301.09262v2)

Published 23 Jan 2023 in cs.PF, cs.AI, and cs.LG

Abstract: Transformer models gain popularity because of their superior inference accuracy and inference throughput. However, the transformer is computation-intensive, causing a long inference time. The existing works on transformer inference acceleration have limitations caused by either the modification of transformer architectures or the need of specialized hardware. In this paper, we identify the opportunities of using memoization to accelerate the self-attention mechanism in transformers without the above limitations. Built upon a unique observation that there is rich similarity in attention computation across inference sequences, we build a memoization database that leverages the emerging big memory system. We introduce a novel embedding technique to find semantically similar inputs to identify computation similarity. We also introduce a series of techniques such as memory mapping and selective memoization to avoid memory copy and unnecessary overhead. We enable 22% inference-latency reduction on average (up to 68%) with negligible loss in inference accuracy.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube