Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimising complexity of CNN models for resource constrained devices: QRS detection case study (2301.09232v1)

Published 23 Jan 2023 in cs.LG and eess.SP

Abstract: Traditional DL models are complex and resource hungry and thus, care needs to be taken in designing Internet of (medical) things (IoT, or IoMT) applications balancing efficiency-complexity trade-off. Recent IoT solutions tend to avoid using deep-learning methods due to such complexities, and rather classical filter-based methods are commonly used. We hypothesize that a shallow CNN model can offer satisfactory level of performance in combination by leveraging other essential solution-components, such as post-processing that is suitable for resource constrained environment. In an IoMT application context, QRS-detection and R-peak localisation from ECG signal as a case study, the complexities of CNN models and post-processing were varied to identify a set of combinations suitable for a range of target resource-limited environments. To the best of our knowledge, finding a deploy-able configuration, by incrementally increasing the CNN model complexity, as required to match the target's resource capacity, and leveraging the strength of post-processing, is the first of its kind. The results show that a shallow 2-layer CNN with a suitable post-processing can achieve $>$90\% F1-score, and the scores continue to improving for 8-32 layer CNNs, which can be used to profile target constraint environment. The outcome shows that it is possible to design an optimal DL solution with known target performance characteristics and resource (computing capacity, and memory) constraints.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ahsan Habib (6 papers)
  2. Chandan Karmakar (6 papers)
  3. John Yearwood (10 papers)

Summary

We haven't generated a summary for this paper yet.