Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Characterization and Learning of Causal Graphs with Small Conditioning Sets (2301.09028v2)

Published 22 Jan 2023 in cs.AI, cs.LG, and stat.ML

Abstract: Constraint-based causal discovery algorithms learn part of the causal graph structure by systematically testing conditional independences observed in the data. These algorithms, such as the PC algorithm and its variants, rely on graphical characterizations of the so-called equivalence class of causal graphs proposed by Pearl. However, constraint-based causal discovery algorithms struggle when data is limited since conditional independence tests quickly lose their statistical power, especially when the conditioning set is large. To address this, we propose using conditional independence tests where the size of the conditioning set is upper bounded by some integer $k$ for robust causal discovery. The existing graphical characterizations of the equivalence classes of causal graphs are not applicable when we cannot leverage all the conditional independence statements. We first define the notion of $k$-Markov equivalence: Two causal graphs are $k$-Markov equivalent if they entail the same conditional independence constraints where the conditioning set size is upper bounded by $k$. We propose a novel representation that allows us to graphically characterize $k$-Markov equivalence between two causal graphs. We propose a sound constraint-based algorithm called the $k$-PC algorithm for learning this equivalence class. Finally, we conduct synthetic, and semi-synthetic experiments to demonstrate that the $k$-PC algorithm enables more robust causal discovery in the small sample regime compared to the baseline algorithms.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)