Statistically Optimal Robust Mean and Covariance Estimation for Anisotropic Gaussians (2301.09024v1)
Abstract: Assume that $X_{1}, \ldots, X_{N}$ is an $\varepsilon$-contaminated sample of $N$ independent Gaussian vectors in $\mathbb{R}d$ with mean $\mu$ and covariance $\Sigma$. In the strong $\varepsilon$-contamination model we assume that the adversary replaced an $\varepsilon$ fraction of vectors in the original Gaussian sample by any other vectors. We show that there is an estimator $\widehat \mu$ of the mean satisfying, with probability at least $1 - \delta$, a bound of the form [ |\widehat{\mu} - \mu|_2 \le c\left(\sqrt{\frac{\operatorname{Tr}(\Sigma)}{N}} + \sqrt{\frac{|\Sigma|\log(1/\delta)}{N}} + \varepsilon\sqrt{|\Sigma|}\right), ] where $c > 0$ is an absolute constant and $|\Sigma|$ denotes the operator norm of $\Sigma$. In the same contaminated Gaussian setup, we construct an estimator $\widehat \Sigma$ of the covariance matrix $\Sigma$ that satisfies, with probability at least $1 - \delta$, [ \left|\widehat{\Sigma} - \Sigma\right| \le c\left(\sqrt{\frac{|\Sigma|\operatorname{Tr}(\Sigma)}{N}} + |\Sigma|\sqrt{\frac{\log(1/\delta)}{N}} + \varepsilon|\Sigma|\right). ] Both results are optimal up to multiplicative constant factors. Despite the recent significant interest in robust statistics, achieving both dimension-free bounds in the canonical Gaussian case remained open. In fact, several previously known results were either dimension-dependent and required $\Sigma$ to be close to identity, or had a sub-optimal dependence on the contamination level $\varepsilon$. As a part of the analysis, we derive sharp concentration inequalities for central order statistics of Gaussian, folded normal, and chi-squared distributions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.