Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

The Best of Both Worlds: Accurate Global and Personalized Models through Federated Learning with Data-Free Hyper-Knowledge Distillation (2301.08968v2)

Published 21 Jan 2023 in cs.LG

Abstract: Heterogeneity of data distributed across clients limits the performance of global models trained through federated learning, especially in the settings with highly imbalanced class distributions of local datasets. In recent years, personalized federated learning (pFL) has emerged as a potential solution to the challenges presented by heterogeneous data. However, existing pFL methods typically enhance performance of local models at the expense of the global model's accuracy. We propose FedHKD (Federated Hyper-Knowledge Distillation), a novel FL algorithm in which clients rely on knowledge distillation (KD) to train local models. In particular, each client extracts and sends to the server the means of local data representations and the corresponding soft predictions -- information that we refer to as ``hyper-knowledge". The server aggregates this information and broadcasts it to the clients in support of local training. Notably, unlike other KD-based pFL methods, FedHKD does not rely on a public dataset nor it deploys a generative model at the server. We analyze convergence of FedHKD and conduct extensive experiments on visual datasets in a variety of scenarios, demonstrating that FedHKD provides significant improvement in both personalized as well as global model performance compared to state-of-the-art FL methods designed for heterogeneous data settings.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube