Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Using deterministic tourist walk as a small-world metric on Watts-Strogatz networks (2301.08956v1)

Published 21 Jan 2023 in cs.SI and physics.data-an

Abstract: The Watts-Strogatz model (WS) has been demonstrated to effectively describe real-world networks due to its ability to reproduce the small-world properties commonly observed in a variety of systems, including social networks, computer networks, biochemical reactions, and neural networks. As the presence of small-world properties is a prevalent characteristic in many real-world networks, the measurement of "small-worldness" has become a crucial metric in the field of network science, leading to the development of various methods for its assessment over the past two decades. In contrast, the deterministic tourist walk (DTW) method has emerged as a prominent technique for texture analysis and network classification. In this paper, we propose the use of a modified version of the DTW method to classify networks into three categories: regular networks, random networks, and small-world networks. Additionally, we construct a small-world metric, denoted by the coefficient $\chi$, from the DTW method. Results indicate that the proposed method demonstrates excellent performance in the task of network classification, achieving over $90\%$ accuracy. Furthermore, the results obtained using the coefficient $\chi$ on real-world networks provide evidence that the proposed method effectively serves as a satisfactory small-world metric.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube