Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Genetically Modified Wolf Optimization with Stochastic Gradient Descent for Optimising Deep Neural Networks (2301.08950v1)

Published 21 Jan 2023 in cs.NE

Abstract: When training Convolutional Neural Networks (CNNs) there is a large emphasis on creating efficient optimization algorithms and highly accurate networks. The state-of-the-art method of optimizing the networks is done by using gradient descent algorithms, such as Stochastic Gradient Descent (SGD). However, there are some limitations presented when using gradient descent methods. The major drawback is the lack of exploration, and over-reliance on exploitation. Hence, this research aims to analyze an alternative approach to optimizing neural network (NN) weights, with the use of population-based metaheuristic algorithms. A hybrid between Grey Wolf Optimizer (GWO) and Genetic Algorithms (GA) is explored, in conjunction with SGD; producing a Genetically Modified Wolf optimization algorithm boosted with SGD (GMW-SGD). This algorithm allows for a combination between exploitation and exploration, whilst also tackling the issue of high-dimensionality, affecting the performance of standard metaheuristic algorithms. The proposed algorithm was trained and tested on CIFAR-10 where it performs comparably to the SGD algorithm, reaching high test accuracy, and significantly outperforms standard metaheuristic algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.