Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Explainable Multilayer Graph Neural Network for Cancer Gene Prediction (2301.08831v2)

Published 20 Jan 2023 in cs.LG

Abstract: The identification of cancer genes is a critical yet challenging problem in cancer genomics research. Existing computational methods, including deep graph neural networks, fail to exploit the multilayered gene-gene interactions or provide limited explanation for their predictions. These methods are restricted to a single biological network, which cannot capture the full complexity of tumorigenesis. Models trained on different biological networks often yield different and even opposite cancer gene predictions, hindering their trustworthy adaptation. Here, we introduce an Explainable Multilayer Graph Neural Network (EMGNN) approach to identify cancer genes by leveraging multiple genegene interaction networks and pan-cancer multi-omics data. Unlike conventional graph learning on a single biological network, EMGNN uses a multilayered graph neural network to learn from multiple biological networks for accurate cancer gene prediction. Our method consistently outperforms all existing methods, with an average 7.15% improvement in area under the precision-recall curve (AUPR) over the current state-of-the-art method. Importantly, EMGNN integrated multiple graphs to prioritize newly predicted cancer genes with conflicting predictions from single biological networks. For each prediction, EMGNN provided valuable biological insights via both model-level feature importance explanations and molecular-level gene set enrichment analysis. Overall, EMGNN offers a powerful new paradigm of graph learning through modeling the multilayered topological gene relationships and provides a valuable tool for cancer genomics research.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.