Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DoubleH: Twitter User Stance Detection via Bipartite Graph Neural Networks (2301.08774v1)

Published 20 Jan 2023 in cs.SI and cs.AI

Abstract: Given the development and abundance of social media, studying the stance of social media users is a challenging and pressing issue. Social media users express their stance by posting tweets and retweeting. Therefore, the homogeneous relationship between users and the heterogeneous relationship between users and tweets are relevant for the stance detection task. Recently, graph neural networks (GNNs) have developed rapidly and have been applied to social media research. In this paper, we crawl a large-scale dataset of the 2020 US presidential election and automatically label all users by manually tagged hashtags. Subsequently, we propose a bipartite graph neural network model, DoubleH, which aims to better utilize homogeneous and heterogeneous information in user stance detection tasks. Specifically, we first construct a bipartite graph based on posting and retweeting relations for two kinds of nodes, including users and tweets. We then iteratively update the node's representation by extracting and separately processing heterogeneous and homogeneous information in the node's neighbors. Finally, the representations of user nodes are used for user stance classification. Experimental results show that DoubleH outperforms the state-of-the-art methods on popular benchmarks. Further analysis illustrates the model's utilization of information and demonstrates stability and efficiency at different numbers of layers.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.