Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Can Peanuts Fall in Love with Distributional Semantics? (2301.08731v2)

Published 20 Jan 2023 in cs.CL

Abstract: Context changes expectations about upcoming words - following a story involving an anthropomorphic peanut, comprehenders expect the sentence the peanut was in love more than the peanut was salted, as indexed by N400 amplitude (Nieuwland & van Berkum, 2006). This updating of expectations has been explained using Situation Models - mental representations of a described event. However, recent work showing that N400 amplitude is predictable from distributional information alone raises the question whether situation models are necessary for these contextual effects. We model the results of Nieuwland and van Berkum (2006) using six computational LLMs and three sets of word vectors, none of which have explicit situation models or semantic grounding. We find that a subset of these can fully model the effect found by Nieuwland and van Berkum (2006). Thus, at least some processing effects normally explained through situation models may not in fact require explicit situation models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.