Papers
Topics
Authors
Recent
2000 character limit reached

Holistically Explainable Vision Transformers (2301.08669v1)

Published 20 Jan 2023 in cs.CV and stat.ML

Abstract: Transformers increasingly dominate the machine learning landscape across many tasks and domains, which increases the importance for understanding their outputs. While their attention modules provide partial insight into their inner workings, the attention scores have been shown to be insufficient for explaining the models as a whole. To address this, we propose B-cos transformers, which inherently provide holistic explanations for their decisions. Specifically, we formulate each model component - such as the multi-layer perceptrons, attention layers, and the tokenisation module - to be dynamic linear, which allows us to faithfully summarise the entire transformer via a single linear transform. We apply our proposed design to Vision Transformers (ViTs) and show that the resulting models, dubbed Bcos-ViTs, are highly interpretable and perform competitively to baseline ViTs on ImageNet. Code will be made available soon.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.