Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Coresets for Constrained Clustering: General Assignment Constraints and Improved Size Bounds (2301.08460v6)

Published 20 Jan 2023 in cs.DS and cs.CG

Abstract: Designing small-sized \emph{coresets}, which approximately preserve the costs of the solutions for large datasets, has been an important research direction for the past decade. We consider coreset construction for a variety of general constrained clustering problems. We introduce a general class of assignment constraints, including capacity constraints on cluster centers, and assignment structure constraints for data points (modeled by a convex body $\mathcal{B}$). We give coresets for clustering problems with such general assignment constraints that significantly generalize and improve known results. Notable implications include the first $\varepsilon$-coreset for capacitated and fair $k$-Median with $m$ outliers in Euclidean spaces whose size is $\tilde{O}(m + k2 \varepsilon{-4})$, generalizing and improving upon the prior bounds in Braverman et al., FOCS' 22; Huang et al., ICLR' 23, and the first $\epsilon$-coreset of size $\mathrm{poly}(k \varepsilon{-1})$ for fault-tolerant clustering for various types of metric spaces.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.