Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adaptive Resource Allocation for Workflow Containerization on Kubernetes (2301.08409v1)

Published 20 Jan 2023 in cs.DC

Abstract: In a cloud-native era, the Kubernetes-based workflow engine enables workflow containerized execution through the inherent abilities of Kubernetes. However, when encountering continuous workflow requests and unexpected resource request spikes, the engine is limited to the current workflow load information for resource allocation, which lacks the agility and predictability of resource allocation, resulting in over and under-provisioning resources. This mechanism seriously hinders workflow execution efficiency and leads to high resource waste. To overcome these drawbacks, we propose an adaptive resource allocation scheme named ARAS for the Kubernetes-based workflow engines. Considering potential future workflow task requests within the current task pod's lifecycle, the ARAS uses a resource scaling strategy to allocate resources in response to high-concurrency workflow scenarios. The ARAS offers resource discovery, resource evaluation, and allocation functionalities and serves as a key component for our tailored workflow engine (KubeAdaptor). By integrating the ARAS into KubeAdaptor for workflow containerized execution, we demonstrate the practical abilities of KubeAdaptor and the advantages of our ARAS. Compared with the baseline algorithm, experimental evaluation under three distinct workflow arrival patterns shows that ARAS gains time-saving of 9.8% to 40.92% in the average total duration of all workflows, time-saving of 26.4% to 79.86% in the average duration of individual workflow, and an increase of 1% to 16% in CPU and memory resource usage rate.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.