Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Cohesive Distillation Architecture for Neural Language Models (2301.08130v2)

Published 12 Jan 2023 in cs.CL

Abstract: A recent trend in Natural Language Processing is the exponential growth in LLM (LM) size, which prevents research groups without a necessary hardware infrastructure from participating in the development process. This study investigates methods for Knowledge Distillation (KD) to provide efficient alternatives to large-scale models. In this context, KD means extracting information about language encoded in a Neural Network and Lexical Knowledge Databases. We developed two methods to test our hypothesis that efficient architectures can gain knowledge from LMs and extract valuable information from lexical sources. First, we present a technique to learn confident probability distribution for Masked LLMing by prediction weighting of multiple teacher networks. Second, we propose a method for Word Sense Disambiguation (WSD) and lexical KD that is general enough to be adapted to many LMs. Our results show that KD with multiple teachers leads to improved training convergence. When using our lexical pre-training method, LM characteristics are not lost, leading to increased performance in Natural Language Understanding (NLU) tasks over the state-of-the-art while adding no parameters. Moreover, the improved semantic understanding of our model increased the task performance beyond WSD and NLU in a real-problem scenario (Plagiarism Detection). This study suggests that sophisticated training methods and network architectures can be superior over scaling trainable parameters. On this basis, we suggest the research area should encourage the development and use of efficient models and rate impacts resulting from growing LM size equally against task performance.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)