Papers
Topics
Authors
Recent
2000 character limit reached

Source Code Metrics for Software Defects Prediction (2301.08022v1)

Published 19 Jan 2023 in cs.SE

Abstract: In current research, there are contrasting results about the applicability of software source code metrics as features for defect prediction models. The goal of the paper is to evaluate the adoption of software metrics in models for software defect prediction, identifying the impact of individual source code metrics. With an empirical study on 275 release versions of 39 Java projects mined from GitHub, we compute 12 software metrics and collect software defect information. We train and compare three defect classification models. The results across all projects indicate that Decision Tree (DT) and Random Forest (RF) classifiers show the best results. Among the highest-performing individual metrics are NOC, NPA, DIT, and LCOM5. While other metrics, such as CBO, do not bring significant improvements to the models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.