Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

THLNet: two-stage heterogeneous lightweight network for monaural speech enhancement (2301.07939v2)

Published 19 Jan 2023 in cs.SD and eess.AS

Abstract: In this paper, we propose a two-stage heterogeneous lightweight network for monaural speech enhancement. Specifically, we design a novel two-stage framework consisting of a coarse-grained full-band mask estimation stage and a fine-grained low-frequency refinement stage. Instead of using a hand-designed real-valued filter, we use a novel learnable complex-valued rectangular bandwidth (LCRB) filter bank as an extractor of compact features. Furthermore, considering the respective characteristics of the proposed two-stage task, we used a heterogeneous structure, i.e., a U-shaped subnetwork as the backbone of CoarseNet and a single-scale subnetwork as the backbone of FineNet. We conducted experiments on the VoiceBank + DEMAND and DNS datasets to evaluate the proposed approach. The experimental results show that the proposed method outperforms the current state-of-the-art methods, while maintaining relatively small model size and low computational complexity.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.