Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Gaussian Process Regression with Huber Likelihood (2301.07858v1)

Published 19 Jan 2023 in stat.AP and stat.ML

Abstract: Gaussian process regression in its most simplified form assumes normal homoscedastic noise and utilizes analytically tractable mean and covariance functions of predictive posterior distribution using Gaussian conditioning. Its hyperparameters are estimated by maximizing the evidence, commonly known as type II maximum likelihood estimation. Unfortunately, Bayesian inference based on Gaussian likelihood is not robust to outliers, which are often present in the observational training data sets. To overcome this problem, we propose a robust process model in the Gaussian process framework with the likelihood of observed data expressed as the Huber probability distribution. The proposed model employs weights based on projection statistics to scale residuals and bound the influence of vertical outliers and bad leverage points on the latent functions estimates while exhibiting a high statistical efficiency at the Gaussian and thick tailed noise distributions. The proposed method is demonstrated by two real world problems and two numerical examples using datasets with additive errors following thick tailed distributions such as Students t, Laplace, and Cauchy distribution.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.