Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

An investigation of the reconstruction capacity of stacked convolutional autoencoders for log-mel-spectrograms (2301.07665v1)

Published 18 Jan 2023 in cs.SD, cs.LG, and eess.AS

Abstract: In audio processing applications, the generation of expressive sounds based on high-level representations demonstrates a high demand. These representations can be used to manipulate the timbre and influence the synthesis of creative instrumental notes. Modern algorithms, such as neural networks, have inspired the development of expressive synthesizers based on musical instrument timbre compression. Unsupervised deep learning methods can achieve audio compression by training the network to learn a mapping from waveforms or spectrograms to low-dimensional representations. This study investigates the use of stacked convolutional autoencoders for the compression of time-frequency audio representations for a variety of instruments for a single pitch. Further exploration of hyper-parameters and regularization techniques is demonstrated to enhance the performance of the initial design. In an unsupervised manner, the network is able to reconstruct a monophonic and harmonic sound based on latent representations. In addition, we introduce an evaluation metric to measure the similarity between the original and reconstructed samples. Evaluating a deep generative model for the synthesis of sound is a challenging task. Our approach is based on the accuracy of the generated frequencies as it presents a significant metric for the perception of harmonic sounds. This work is expected to accelerate future experiments on audio compression using neural autoencoders.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.