Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

News and Load: A Quantitative Exploration of Natural Language Processing Applications for Forecasting Day-ahead Electricity System Demand (2301.07535v2)

Published 18 Jan 2023 in cs.CL, cs.AI, and cs.CY

Abstract: The relationship between electricity demand and weather is well established in power systems, along with the importance of behavioral and social aspects such as holidays and significant events. This study explores the link between electricity demand and more nuanced information about social events. This is done using mature NLP and demand forecasting techniques. The results indicate that day-ahead forecasts are improved by textual features such as word frequencies, public sentiments, topic distributions, and word embeddings. The social events contained in these features include global pandemics, politics, international conflicts, transportation, etc. Causality effects and correlations are discussed to propose explanations for the mechanisms behind the links highlighted. This study is believed to bring a new perspective to traditional electricity demand analysis. It confirms the feasibility of improving forecasts from unstructured text, with potential consequences for sociology and economics.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.