Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dirichlet-Neumann learning algorithm for solving elliptic interface problems (2301.07361v2)

Published 18 Jan 2023 in math.NA, cs.LG, and cs.NA

Abstract: Non-overlapping domain decomposition methods are natural for solving interface problems arising from various disciplines, however, the numerical simulation requires technical analysis and is often available only with the use of high-quality grids, thereby impeding their use in more complicated situations. To remove the burden of mesh generation and to effectively tackle with the interface jump conditions, a novel mesh-free scheme, i.e., Dirichlet-Neumann learning algorithm, is proposed in this work to solve the benchmark elliptic interface problem with high-contrast coefficients as well as irregular interfaces. By resorting to the variational principle, we carry out a rigorous error analysis to evaluate the discrepancy caused by the boundary penalty treatment for each decomposed subproblem, which paves the way for realizing the Dirichlet-Neumann algorithm using neural network extension operators. The effectiveness and robustness of our proposed methods are demonstrated experimentally through a series of elliptic interface problems, achieving better performance over other alternatives especially in the presence of erroneous flux prediction at interface.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.