Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Implicit State and Goals in QBF Encodings for Positional Games (extended version) (2301.07345v1)

Published 18 Jan 2023 in cs.AI

Abstract: We address two bottlenecks for concise QBF encodings of maker-breaker positional games, like Hex and Tic-Tac-Toe. Our baseline is a QBF encoding with explicit variables for board positions and an explicit representation of winning configurations. The first improvement is inspired by lifted planning and avoids variables for explicit board positions, introducing a universal quantifier representing a symbolic board state. The second improvement represents the winning configurations implicitly, exploiting their structure. The paper evaluates the size of several encodings, depending on board size and game depth. It also reports the performance of QBF solvers on these encodings. We evaluate the techniques on Hex instances and also apply them to Harary's Tic-Tac-Toe. In particular, we study scalability to 19$\times$19 boards, played in human Hex tournaments.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.