Papers
Topics
Authors
Recent
2000 character limit reached

A Novel Sparse Regularizer (2301.07285v5)

Published 18 Jan 2023 in cs.LG

Abstract: $L_p$-norm regularization schemes such as $L_0$, $L_1$, and $L_2$-norm regularization and $L_p$-norm-based regularization techniques such as weight decay, LASSO, and elastic net compute a quantity which depends on model weights considered in isolation from one another. This paper introduces a regularizer based on minimizing a novel measure of entropy applied to the model during optimization. In contrast with $L_p$-norm-based regularization, this regularizer is concerned with the spatial arrangement of weights within a weight matrix. This novel regularizer is an additive term for the loss function and is differentiable, simple and fast to compute, scale-invariant, requires a trivial amount of additional memory, and can easily be parallelized. Empirically this method yields approximately a one order-of-magnitude improvement in the number of nonzero model parameters required to achieve a given level of test accuracy when training LeNet300 on MNIST.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.