Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaffold-Based Multi-Objective Drug Candidate Optimization (2301.07175v2)

Published 15 Dec 2022 in q-bio.BM and cs.LG

Abstract: In therapeutic design, balancing various physiochemical properties is crucial for molecule development, similar to how Multiparameter Optimization (MPO) evaluates multiple variables to meet a primary goal. While many molecular features can now be predicted using \textit{in silico} methods, aiding early drug development, the vast data generated from high throughput virtual screening challenges the practicality of traditional MPO approaches. Addressing this, we introduce a scaffold focused graph-based Markov chain Monte Carlo framework (ScaMARS) built to generate molecules with optimal properties. This innovative framework is capable of self-training and handling a wider array of properties, sampling different chemical spaces according to the starting scaffold. The benchmark analysis on several properties shows that ScaMARS has a diversity score of 84.6\% and has a much higher success rate of 99.5\% compared to conditional models. The integration of new features into MPO significantly enhances its adaptability and effectiveness in therapeutic design, facilitating the discovery of candidates that efficiently optimize multiple properties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Machine learning in chemoinformatics and drug discovery. Drug Discovery Today, 23(8):1538–1546, 2018. ISSN 1359-6446. doi:https://doi.org/10.1016/j.drudis.2018.05.010. URL https://www.sciencedirect.com/science/article/pii/S1359644617304695.
  2. Critical assessment of ai in drug discovery. Expert Opinion on Drug Discovery, 16(9):937–947, 2021. doi:10.1080/17460441.2021.1915982. URL https://doi.org/10.1080/17460441.2021.1915982. PMID: 33870801.
  3. Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1):80–93, 2021. ISSN 1359-6446. doi:https://doi.org/10.1016/j.drudis.2020.10.010. URL https://www.sciencedirect.com/science/article/pii/S1359644620304256.
  4. ρ𝜌\rhoitalic_ρ-σ𝜎\sigmaitalic_σ-π𝜋\piitalic_π analysis. a method for the correlation of biological activity and chemical structure. Journal of the American Chemical Society, 86(8):1616–1626, 1964. doi:10.1021/ja01062a035. URL https://doi.org/10.1021/ja01062a035.
  5. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1(1):8, 2009. ISSN 1758-2946. doi:10.1186/1758-2946-1-8. URL https://doi.org/10.1186/1758-2946-1-8.
  6. Janus: Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design. arXiv, 2021. doi:10.48550/ARXIV.2106.04011. URL https://arxiv.org/abs/2106.04011.
  7. Mars: Markov molecular sampling for multi-objective drug discovery. arXiv, 2021. doi:10.48550/ARXIV.2103.10432. URL https://arxiv.org/abs/2103.10432.
  8. Generative chemical transformer: Neural machine learning of molecular geometric structures from chemical language via attention. Journal of Chemical Information and Modeling, 61(12):5804–5814, 2021.
  9. Machine learning enabled tailor-made design of application-specific metal–organic frameworks. ACS Applied Materials & Interfaces, 12(1):734–743, 2020. ISSN 1944-8244. doi:10.1021/acsami.9b17867. URL https://doi.org/10.1021/acsami.9b17867. doi: 10.1021/acsami.9b17867.
  10. Parameters, properties, and process: Conditional neural generation of realistic sem imagery toward ml-assisted advanced manufacturing. Integrating Materials and Manufacturing Innovation, 12(1):1–10, 2023. ISSN 2193-9772. doi:10.1007/s40192-022-00287-y. URL https://doi.org/10.1007/s40192-022-00287-y.
  11. Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation. Materials & Design, 197:109260, 2021. ISSN 0264-1275. doi:https://doi.org/10.1016/j.matdes.2020.109260. URL https://www.sciencedirect.com/science/article/pii/S0264127520307954.
  12. Assessing multi-objective optimization of molecules with genetic algorithms against relevant baselines. OpenReview, 2022. URL https://openreview.net/forum?id=sWRZxIcR8qK.
  13. Matthew D. Segall. Multi-parameter optimization: Identifying high quality compounds with a balance of properties. Current Pharmaceutical Design, 18(9):1292–1310, 2012. ISSN 1381-6128/1873-4286. doi:10.2174/138161212799436430. URL http://www.eurekaselect.com/article/21562.
  14. Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4):214–219, 1980. doi:10.1080/00224065.1980.11980968. URL https://doi.org/10.1080/00224065.1980.11980968.
  15. The ChEMBL database in 2017. Nucleic Acids Research, 45(D1):D945–D954, 11 2016. ISSN 0305-1048. doi:10.1093/nar/gkw1074. URL https://doi.org/10.1093/nar/gkw1074.
  16. Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2(10):573–584, 2020. ISSN 2522-5839. doi:10.1038/s42256-020-00236-4. URL https://doi.org/10.1038/s42256-020-00236-4.
  17. Intelligible models for classification and regression. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, page 150–158, New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450314626. doi:10.1145/2339530.2339556. URL https://doi.org/10.1145/2339530.2339556.
  18. Interpreting blackbox models via model extraction. arXiv, 2017. doi:10.48550/ARXIV.1705.08504. URL https://arxiv.org/abs/1705.08504.
  19. Dt+gnn: A fully explainable graph neural network using decision trees. arXiv, 2022. doi:10.48550/ARXIV.2205.13234. URL https://arxiv.org/abs/2205.13234.
  20. rdkit/rdkit: 2022_03_5 (q1 2022) release. Zenodo, August 2022. doi:10.5281/zenodo.6961488. URL https://doi.org/10.5281/zenodo.6961488.
  21. Swissadme: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1):42717, 2017. ISSN 2045-2322. doi:10.1038/srep42717. URL https://doi.org/10.1038/srep42717.
  22. Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2):90–98, 2012. ISSN 1755-4349. doi:10.1038/nchem.1243. URL https://doi.org/10.1038/nchem.1243.
  23. 2-aralkoxyadenosines: potent and selective agonists at the coronary artery a2 adenosine receptor. J Med Chem, 34(4):1340–4, 1991. ISSN 0022-2623 (Print) 0022-2623. doi:10.1021/jm00108a015. Ueeda, M Thompson, R D Arroyo, L H Olsson, R A Comparative Study Journal Article United States 1991/04/01 J Med Chem. 1991 Apr;34(4):1340-4. doi: 10.1021/jm00108a015.
  24. Y Kuroda. Physiological roles of adenosine derivatives which are released during neurotransmission in mammalian brain. Journal de physiologie, 74(5):463–470, 1978.
  25. Understanding how dimension reduction tools work: An empirical approach to deciphering t-sne, umap, trimap, and pacmap for data visualization. Journal of Machine Learning Research, 22(201):1–73, 2021. URL http://jmlr.org/papers/v22/20-1061.html.
  26. Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6(60):3021, 2021. doi:10.21105/joss.03021. URL https://doi.org/10.21105/joss.03021.
  27. Askcos. https://askcos.mit.edu/, 2017. Accessed: 2023-11-22.
Citations (1)

Summary

We haven't generated a summary for this paper yet.