Vision Learners Meet Web Image-Text Pairs (2301.07088v3)
Abstract: Many self-supervised learning methods are pre-trained on the well-curated ImageNet-1K dataset. In this work, given the excellent scalability of web data, we consider self-supervised pre-training on noisy web sourced image-text paired data. First, we conduct a benchmark study of representative self-supervised pre-training methods on large-scale web data in a like-for-like setting. We compare a range of methods, including single-modal ones that use masked training objectives and multi-modal ones that use image-text constrastive training. We observe that existing multi-modal methods do not outperform their single-modal counterparts on vision transfer learning tasks. We derive an information-theoretical view to explain these benchmark results, which provides insight into how to design a novel vision learner. Inspired by this insight, we present a new visual representation pre-training method, MUlti-modal Generator~(MUG), that learns from scalable web sourced image-text data. MUG achieves state-of-the-art transfer performance on a variety of tasks and demonstrates promising scaling properties. Pre-trained models and code will be made public upon acceptance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.