Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Training Methods of Multi-label Prediction Classifiers for Hyperspectral Remote Sensing Images (2301.06874v2)

Published 17 Jan 2023 in cs.CV

Abstract: With their combined spectral depth and geometric resolution, hyperspectral remote sensing images embed a wealth of complex, non-linear information that challenges traditional computer vision techniques. Yet, deep learning methods known for their representation learning capabilities prove more suitable for handling such complexities. Unlike applications that focus on single-label, pixel-level classification methods for hyperspectral remote sensing images, we propose a multi-label, patch-level classification method based on a two-component deep-learning network. We use patches of reduced spatial dimension and a complete spectral depth extracted from the remote sensing images. Additionally, we investigate three training schemes for our network: Iterative, Joint, and Cascade. Experiments suggest that the Joint scheme is the best-performing scheme; however, its application requires an expensive search for the best weight combination of the loss constituents. The Iterative scheme enables the sharing of features between the two parts of the network at the early stages of training. It performs better on complex data with multi-labels. Further experiments showed that methods designed with different architectures performed well when trained on patches extracted and labeled according to our sampling method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.