Papers
Topics
Authors
Recent
2000 character limit reached

Faster Sinkhorn's Algorithm with Small Treewidth (2301.06741v1)

Published 17 Jan 2023 in cs.DS

Abstract: Computing optimal transport (OT) distances such as the earth mover's distance is a fundamental problem in machine learning, statistics, and computer vision. In this paper, we study the problem of approximating the general OT distance between two discrete distributions of size $n$. Given the cost matrix $C=AA\top$ where $A \in \mathbb{R}{n \times d}$, we proposed a faster Sinkhorn's Algorithm to approximate the OT distance when matrix $A$ has treewidth $\tau$. To approximate the OT distance, our algorithm improves the state-of-the-art results [Dvurechensky, Gasnikov, and Kroshnin ICML 2018] from $\widetilde{O}(\epsilon{-2} n2)$ time to $\widetilde{O}(\epsilon{-2} n \tau)$ time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.