Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Predictive Modeling of Coronal Hole Areas Using Long Short-Term Memory Networks (2301.06732v7)

Published 17 Jan 2023 in astro-ph.SR, astro-ph.EP, cs.LG, and physics.space-ph

Abstract: In the era of space exploration, the implications of space weather have become increasingly evident. Central to this is the phenomenon of coronal holes, which can significantly influence the functioning of satellites and aircraft. These coronal holes, present on the sun, are distinguished by their open magnetic field lines and comparatively cooler temperatures, leading to the emission of solar winds at heightened rates. To anticipate the effects of these coronal holes on Earth, our study harnesses computer vision to pinpoint the coronal hole regions and estimate their dimensions using imagery from the Solar Dynamics Observatory (SDO). Further, we deploy deep learning methodologies, specifically the Long Short-Term Memory (LSTM) approach, to analyze the trends in the data related to the area of the coronal holes and predict their dimensions across various solar regions over a span of seven days. By evaluating the time series data concerning the area of the coronal holes, our research seeks to uncover patterns in the behavior of coronal holes and comprehend their potential influence on space weather occurrences. This investigation marks a pivotal stride towards bolstering our capacity to anticipate and brace for space weather events that could have ramifications for Earth and its technological apparatuses.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.