ClassBases at CASE-2022 Multilingual Protest Event Detection Tasks: Multilingual Protest News Detection and Automatically Replicating Manually Created Event Datasets (2301.06617v1)
Abstract: In this report, we describe our ClassBases submissions to a shared task on multilingual protest event detection. For the multilingual protest news detection, we participated in subtask-1, subtask-2, and subtask-4, which are document classification, sentence classification, and token classification. In subtask-1, we compare XLM-RoBERTa-base, mLUKE-base, and XLM-RoBERTa-large on finetuning in a sequential classification setting. We always use a combination of the training data from every language provided to train our multilingual models. We found that larger models seem to work better and entity knowledge helps but at a non-negligible cost. For subtask-2, we only submitted an mLUKE-base system for sentence classification. For subtask-4, we only submitted an XLM-RoBERTa-base for token classification system for sequence labeling. For automatically replicating manually created event datasets, we participated in COVID-related protest events from the New York Times news corpus. We created a system to process the crawled data into a dataset of protest events.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.