Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neighborhood-based Hypergraph Core Decomposition (2301.06426v2)

Published 16 Jan 2023 in cs.SI and cs.DS

Abstract: We propose neighborhood-based core decomposition: a novel way of decomposing hypergraphs into hierarchical neighborhood-cohesive subhypergraphs. Alternative approaches to decomposing hypergraphs, e.g., reduction to clique or bipartite graphs, are not meaningful in certain applications, the later also results in inefficient decomposition; while existing degree-based hypergraph decomposition does not distinguish nodes with different neighborhood sizes. Our case studies show that the proposed decomposition is more effective than degree and clique graph-based decompositions in disease intervention and in extracting provably approximate and application-wise meaningful densest subhypergraphs. We propose three algorithms: Peel, its efficient variant E-Peel, and a novel local algorithm: Local-core with parallel implementation. Our most efficient parallel algorithm Local-core(P) decomposes hypergraph with 27M nodes and 17M hyperedges in-memory within 91 seconds by adopting various optimizations. Finally, we develop a new hypergraph-core model, the (neighborhood, degree)-core by considering both neighborhood and degree constraints, design its decomposition algorithm Local-core+Peel, and demonstrate its superiority in spreading diffusion.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube