2000 character limit reached
Calibrated Data-Dependent Constraints with Exact Satisfaction Guarantees (2301.06195v1)
Published 15 Jan 2023 in stat.ML and cs.LG
Abstract: We consider the task of training machine learning models with data-dependent constraints. Such constraints often arise as empirical versions of expected value constraints that enforce fairness or stability goals. We reformulate data-dependent constraints so that they are calibrated: enforcing the reformulated constraints guarantees that their expected value counterparts are satisfied with a user-prescribed probability. The resulting optimization problem is amendable to standard stochastic optimization algorithms, and we demonstrate the efficacy of our method on a fairness-sensitive classification task where we wish to guarantee the classifier's fairness (at test time).
- Songkai Xue (7 papers)
- Yuekai Sun (62 papers)
- Mikhail Yurochkin (68 papers)