Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CNN-Based Action Recognition and Pose Estimation for Classifying Animal Behavior from Videos: A Survey (2301.06187v1)

Published 15 Jan 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Classifying the behavior of humans or animals from videos is important in biomedical fields for understanding brain function and response to stimuli. Action recognition, classifying activities performed by one or more subjects in a trimmed video, forms the basis of many of these techniques. Deep learning models for human action recognition have progressed significantly over the last decade. Recently, there is an increased interest in research that incorporates deep learning-based action recognition for animal behavior classification. However, human action recognition methods are more developed. This survey presents an overview of human action recognition and pose estimation methods that are based on convolutional neural network (CNN) architectures and have been adapted for animal behavior classification in neuroscience. Pose estimation, estimating joint positions from an image frame, is included because it is often applied before classifying animal behavior. First, we provide foundational information on algorithms that learn spatiotemporal features through 2D, two-stream, and 3D CNNs. We explore motivating factors that determine optimizers, loss functions and training procedures, and compare their performance on benchmark datasets. Next, we review animal behavior frameworks that use or build upon these methods, organized by the level of supervision they require. Our discussion is uniquely focused on the technical evolution of the underlying CNN models and their architectural adaptations (which we illustrate), rather than their usability in a neuroscience lab. We conclude by discussing open research problems, and possible research directions. Our survey is designed to be a resource for researchers developing fully unsupervised animal behavior classification systems of which there are only a few examples in the literature.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.