Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Linear Mean-Field Games with Discounted Cost (2301.06074v1)

Published 15 Jan 2023 in eess.SY, cs.SY, and math.OC

Abstract: In this paper, we introduce discrete-time linear mean-field games subject to an infinite-horizon discounted-cost optimality criterion. The state space of a generic agent is a compact Borel space. At every time, each agent is randomly coupled with another agent via their dynamics and one-stage cost function, where this randomization is generated via the empirical distribution of their states (i.e., the mean-field term). Therefore, the transition probability and the one-stage cost function of each agent depend linearly on the mean-field term, which is the key distinction between classical mean-field games and linear mean-field games. Under mild assumptions, we show that the policy obtained from infinite population equilibrium is $\varepsilon(N)$-Nash when the number of agents $N$ is sufficiently large, where $\varepsilon(N)$ is an explicit function of $N$. Then, using the linear programming formulation of MDPs and the linearity of the transition probability in mean-field term, we formulate the game in the infinite population limit as a generalized Nash equilibrium problem (GNEP) and establish an algorithm for computing equilibrium with a convergence guarantee.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.